Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.116
Filtrar
1.
Anal Chem ; 95(14): 6038-6045, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972550

RESUMO

The soluble epoxide hydrolase (sEH) is possibly both a marker for and target of numerous diseases. Herein, we describe a homogeneous mix-and-read assay for the detection of human sEH based on using split-luciferase detection coupled with anti-sEH nanobodies. Selective anti-sEH nanobodies were individually fused with NanoLuc Binary Technology (NanoBiT), which consists of a large and small portion of NanoLuc (LgBiT and SmBiT, respectively). Different orientations of the LgBiT and SmBiT-nanobody fusions were expressed and investigated for their ability to reform the active NanoLuc in the presence of the sEH. After optimization, the linear range of the assay could reach 3 orders of magnitude with a limit of detection (LOD) of 1.4 ng/mL. The assay has a high sensitivity to human sEH and reached a similar detection limit to our previously reported conventional nanobody-based ELISA. The procedure of the assay was faster (30 min total) and easy to operate, providing a more flexible and simple way to monitor human sEH levels in biological samples. In general, the immunoassay proposed here offers a more efficient detection and quantification approach that can be easily adapted to numerous macromolecules.


Assuntos
Anticorpos de Domínio Único , Luciferases/análise , Humanos , Epóxido Hidrolases/metabolismo , Fatores de Tempo , Solubilidade , Anticorpos de Domínio Único/imunologia , Calibragem , Animais , Camundongos , Ratos
2.
Adv Sci (Weinh) ; 9(27): e2200239, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901502

RESUMO

Constructing artificial systems that effectively replace or supplement natural biological machinery within cells is one of the fundamental challenges underpinning bioengineering. At the sub-cellular scale, artificial organelles (AOs) have significant potential as long-acting biomedical implants, mimicking native organelles by conducting intracellularly compartmentalized enzymatic actions. The potency of these AOs can be heightened when judiciously combined with genetic engineering, producing highly tailorable biohybrid cellular systems. Here, the authors present a cost-effective, microliter scale (10 µL) polymersome (PSome) synthesis based on polymerization-induced self-assembly for the in situ encapsulation of Gaussia luciferase (GLuc), as a model luminescent enzyme. These GLuc-loaded PSomes present ideal features of AOs including enhanced enzymatic resistance to thermal, proteolytic, and intracellular stresses. To demonstrate their biomodulation potential, the intracellular luminescence of GLuc-loaded PSomes is coupled to optogenetically engineered cardiomyocytes, allowing modulation of cardiac beating frequency through treatment with coelenterazine (CTZ) as the substrate for GLuc. The long-term intracellular stability of the luminescent AOs allows this cardiostimulatory phenomenon to be reinitiated with fresh CTZ even after 7 days in culture. This synergistic combination of organelle-mimicking synthetic materials with genetic engineering is therefore envisioned as a highly universal strategy for the generation of new biohybrid cellular systems displaying unique triggerable properties.


Assuntos
Células Artificiais , Luciferases/análise , Luciferases/genética , Miócitos Cardíacos , Optogenética , Organelas/química
3.
STAR Protoc ; 2(3): 100662, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34286293

RESUMO

Multicolor bioluminescence imaging using near-infrared emitting luciferases is an attractive application to detect two cell populations within one animal model. Herein, we describe how to distinguish dual-color bioluminescent signals co-localized in the same compartment. We tested CBG2 click beetle (λ = 660 nm) and CBR2 click beetle (λ = 730 nm) luciferases paired with NH2-NpLH2 luciferin. Following a spectral unmixing algorithm, single spectral contributions can be resolved and quantified, enabling the visualization of multiple cell types in deep tissue by injection of a single substrate. For complete details on the use and execution of this protocol, please refer to Zambito et al. (2020).


Assuntos
Rastreamento de Células/métodos , Medições Luminescentes/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Algoritmos , Animais , Besouros/enzimologia , Feminino , Luciferases/análise , Luciferases/química , Luciferases/metabolismo , Luciferinas/análise , Luciferinas/química , Luciferinas/metabolismo , Camundongos , Camundongos Nus
4.
Malar J ; 20(1): 247, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090438

RESUMO

BACKGROUND: Plasmodium knowlesi is now the major cause of human malaria in Malaysia, complicating malaria control efforts that must attend to the elimination of multiple Plasmodium species. Recent advances in the cultivation of P. knowlesi erythrocytic-stage parasites in vitro, transformation with exogenous DNA, and infection of mosquitoes with gametocytes from culture have opened up studies of this pathogen without the need for resource-intensive and costly non-human primate (NHP) models. For further understanding and development of methods for parasite transformation in malaria research, this study examined the activity of various trans-species transcriptional control sequences and the influence of Plasmodium vivax centromeric (pvcen) repeats in plasmid-transfected P. knowlesi parasites. METHODS: In vitro cultivated P. knowlesi parasites were transfected with plasmid constructs that incorporated Plasmodium vivax or Plasmodium falciparum 5' UTRs driving the expression of bioluminescence markers (firefly luciferase or Nanoluc). Promoter activities were assessed by bioluminescence, and parasites transformed with human resistant allele dihydrofolate reductase-expressing plasmids were selected using antifolates. The stability of transformants carrying pvcen-stabilized episomes was assessed by bioluminescence over a complete parasite life cycle through a rhesus macaque monkey, mosquitoes, and a second rhesus monkey. RESULTS: Luciferase expression assessments show that certain P. vivax promoter regions, not functional in the more evolutionarily-distant P. falciparum, can drive transgene expression in P. knowlesi. Further, pvcen repeats may improve the stability of episomal plasmids in P. knowlesi and support detection of NanoLuc-expressing elements over the full parasite life cycle from rhesus macaque monkeys to Anopheles dirus mosquitoes and back again to monkeys. In assays of drug responses to chloroquine, G418 and WR9910, anti-malarial half-inhibitory concentration (IC50) values of blood stages measured by NanoLuc activity proved comparable to IC50 values measured by the standard SYBR Green method. CONCLUSION: All three P. vivax promoters tested in this study functioned in P. knowlesi, whereas two of the three were inactive in P. falciparum. NanoLuc-expressing, centromere-stabilized plasmids may support high-throughput screenings of P. knowlesi for new anti-malarial agents, including compounds that can block the development of mosquito- and/or liver-stage parasites.


Assuntos
Plasmídeos/fisiologia , Plasmodium knowlesi/genética , Plasmodium vivax/genética , Regiões Promotoras Genéticas , Centrômero/metabolismo , Luciferases/análise , Microrganismos Geneticamente Modificados/genética , Plasmídeos/genética
5.
Toxicol Ind Health ; 37(4): 198-209, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33625315

RESUMO

The widespread use of silver nanoparticles (AgNPs), their many sources for human exposure, and the ability of AgNPs to enter organisms and induce general toxicological responses have raised concerns regarding their public health and environmental safety. To elucidate the differential toxic effects of polyvinylpyrrolidone-capped AgNPs with different primary particle sizes (i.e. 5, 50, and 75 nm), we performed a battery of cytotoxicity and genotoxicity assays and examined the inflammatory responses in two human cell lines (i.e. HepG2 and A549). Concentration-dependent decreases in cell proliferation and mitochondrial membrane potential and increases in cytokine (i.e. interleukin-6 and interleukin-8) excretion indicated disruption of mitochondrial function and inflammation as the main mediating factors of AgNPs-induced cytotoxicity. An incremental increase in genotoxicity with decreasing AgNPs diameter was noted in HepG2 cells, which was associated with S and G2/M accumulation and transcriptional activation of the GADD45α promoter as reflected by luciferase activity. Dose-related genetic damage, as indicated by Olive tail moment and micronucleus formation, was also observed in A549 cells, but these effects as well as the AgNPs-induced cytotoxicity were more associated with ionic Ag release from nanoparticles (NPs). In summary, the present study addressed different toxicity mechanisms of AgNPs, depending on the cell model, toxicological endpoint, particle size, and degree of Ag+ release from NPs. The results suggest that the GADD45α promoter-driven luciferase reporter cell system provided a rapid screening tool for the identification of genotoxic properties of NPs across a range of different sizes and concentrations.


Assuntos
Nanopartículas Metálicas/efeitos adversos , Mutagênicos/análise , Povidona/efeitos adversos , Prata/efeitos adversos , Células A549 , Linhagem Celular , Ensaio Cometa , Citotoxinas/análise , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular/análise , Luciferases/análise , Tamanho da Partícula , Proteínas GADD45
6.
Nucleic Acids Res ; 48(20): 11799-11811, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33137201

RESUMO

Mammalian first line of defense against viruses is accomplished by the interferon (IFN) system. Viruses have evolved numerous mechanisms to reduce the IFN action allowing them to invade the host and/or to establish latency. We generated an IFN responsive intracellular hub by integrating the synthetic transactivator tTA into the chromosomal Mx2 locus for IFN-based activation of tTA dependent expression modules. The additional implementation of a synthetic amplifier module with positive feedback even allowed for monitoring and reacting to infections of viruses that can antagonize the IFN system. Low and transient IFN amounts are sufficient to trigger these amplifier cells. This gives rise to higher and sustained-but optionally de-activatable-expression even when the initial stimulus has faded out. Amplification of the IFN response induced by IFN suppressing viruses is sufficient to protect cells from infection. Together, this interfaced sensor/actuator system provides a toolbox for robust sensing and counteracting viral infections.


Assuntos
Interferon Tipo I/metabolismo , Fenômenos Fisiológicos Virais , Animais , Células Cultivadas , Retroalimentação Fisiológica , Luciferases/análise , Camundongos , Vírus da Doença de Newcastle/fisiologia
7.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847148

RESUMO

Investigations on functional selectivity of GPCR ligands have become increasingly important to identify compounds with a potentially more beneficial side effect profile. In order to discriminate between individual signaling pathways, the determination of ß-arrestin2 recruitment, in addition to G-protein activation, is of great value. In this study, we established a sensitive split luciferase-based assay with the ability to quantify ß-arrestin2 recruitment to D2long and D3 receptors and measure time-resolved ß-arrestin2 recruitment to the D2long receptor after agonist stimulation. We were able to characterize several standard (inverse) agonists as well as antagonists at the D2longR and D3R subtypes, whereas for the D4.4R, no ß-arrestin2 recruitment was detected, confirming previous reports. Extensive radioligand binding studies and comparisons with the respective wild-type receptors confirm that the attachment of the Emerald luciferase fragment to the receptors does not affect the integrity of the receptor proteins. Studies on the involvement of GRK2/3 and PKC on the ß-arrestin recruitment to the D2longR and D3R, as well as at the D1R using different kinase inhibitors, showed that the assay could also contribute to the elucidation of signaling mechanisms. Its broad applicability, which provides concentration-dependent and kinetic information on receptor/ß-arrestin2 interactions, renders this homogeneous assay a valuable method for the identification of biased agonists.


Assuntos
Bioensaio/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Luciferases/metabolismo , Receptores de Dopamina D2/metabolismo , beta-Arrestina 2/metabolismo , Animais , Células HEK293 , Humanos , Cinética , Ligantes , Luciferases/análise , Luciferases/genética , Ligação Proteica , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/análise , beta-Arrestina 2/agonistas , beta-Arrestina 2/análise
8.
Virology ; 548: 226-235, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32771769

RESUMO

Bovine leukemia virus (BLV) is a global problem that results in significant economic losses to the livestock industry. We developed three virus strains by inserting the HiBiT reporter tag from NanoLuc luciferase (NLuc) into limited sites within BLV molecular clones. Initial analysis for site selection of the tag insertion revealed a permissible site immediately downstream of the viral envelope gene. Therefore, NLuc activity could be used to measure virus copy numbers in the supernatant and the levels of cell infection. Productivity and growth kinetics of the reporter virus were similar to those of the wild-type strain; therefore, the reporter virus can be used to characterize the replication of chimeric viruses as well as responses to the antiviral drug, amprenavir. Collectively, our results suggest that the BLV reporter virus with a HiBiT tag insertion is a highly versatile system for various purposes such as evaluating virus replication and antiviral drugs.


Assuntos
Vírus da Leucemia Bovina/genética , Animais , Antivirais/farmacologia , Genes Reporter , Vírus da Leucemia Bovina/efeitos dos fármacos , Vírus da Leucemia Bovina/crescimento & desenvolvimento , Vírus da Leucemia Bovina/fisiologia , Luciferases/análise , Luciferases/genética , Luciferases/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Replicação Viral/efeitos dos fármacos
9.
Cancer Biol Med ; 17(2): 328-342, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32587772

RESUMO

Objectives: Improper activation of Wnt/ß-catenin signaling has been implicated in human diseases. Beyond the well-studied glycogen synthase kinase 3ß (GSK3ß) and casein kinase 1 (CK1), other kinases affecting Wnt/ß-catenin signaling remain to be defined. Methods:To identify the kinases that modulate Wnt/ß-catenin signaling, we applied a kinase small interfering RNA (siRNA) library screen approach. Luciferase assays, immunoblotting, and real-time polymerase chain reaction (PCR) were performed to confirm the regulation of the Wnt/ß-catenin signaling pathway by cyclin-dependent kinase 11 (CDK11) and to investigate the underlying mechanism. Confocal immunofluorescence, coimmunoprecipitation (co-IP), and scratch wound assays were used to demonstrate colocalization, detect protein interactions, and explore the function of CDK11. Results: CDK11 was found to be a significant candidate kinase participating in the negative control of Wnt/ß-catenin signaling. Down-regulation of CDK11 led to the accumulation of Wnt/ß-catenin signaling receptor complexes, in a manner dependent on intact adenomatosis polyposis coli (APC) protein. Further analysis showed that CDK11 modulation of Wnt/ß-catenin signaling engaged the endolysosomal machinery, and CDK11 knockdown enhanced the colocalization of Wnt/ß-catenin signaling receptor complexes with early endosomes and decreased colocalization with lysosomes. Mechanistically, CDK11 was found to function in Wnt/ß-catenin signaling by regulating microtubule stability. Depletion of CDK11 down-regulated acetyl-α-tubulin. Moreover, co-IP assays demonstrated that CDK11 interacts with the α-tubulin deacetylase SIRT2, whereas SIRT2 down-regulation in CDK11-depleted cells reversed the accumulation of Wnt/ß-catenin signaling receptor complexes. CDK11 was found to suppress cell migration through altered Wnt/ß-catenin signaling. Conclusions: CDK11 is a negative modulator of Wnt/ß-catenin signaling that stabilizes microtubules, thus resulting in the dysregulation of receptor complex trafficking from early endosomes to lysosomes.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Regulação para Baixo , Endossomos/metabolismo , Microtúbulos/metabolismo , Proteína da Polipose Adenomatosa do Colo , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/genética , Endossomos/genética , Humanos , Luciferases/análise , Luciferases/genética , Microtúbulos/genética , Sirtuína 2/genética , Sirtuína 2/metabolismo , Proteínas Wnt , Via de Sinalização Wnt , beta Catenina
10.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150894

RESUMO

Pyrocystis lunula is considered a model organism due to its bioluminescence capacity linked to circadian rhythms. The mechanisms underlying the bioluminescent phenomenon have been well characterized in dinoflagellates; however, there are still some aspects that remain an enigma. Such is the case of the presence and diversity of the luciferin-binding protein (LBP), as well as the synthesis process of luciferin. Here we carry out a review of the literature in relation to the molecular players responsible for bioluminescence in dinoflagellates, with particular interest in P. lunula. We also carried out a phylogenetic analysis of the conservation of protein sequence, structure and evolutionary pattern of these key players. The basic structure of the luciferase (LCF) is quite conserved among the sequences reported to date for dinoflagellate species, but not in the case of the LBP, which has proven to be more variable in terms of sequence and structure. In the case of luciferin, its synthesis has been shown to be complex process with more than one metabolic pathway involved. The glutathione S-transferase (GST) and the P630 or blue compound, seem to be involved in this process. In the same way, various hypotheses regarding the role of bioluminescence in dinoflagellates are exposed.


Assuntos
Dinoflagellida/enzimologia , Luciferases/análise , Luminescência , Animais , Humanos , Medições Luminescentes
11.
Cell Chem Biol ; 27(5): 499-510.e7, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32053779

RESUMO

G protein-coupled receptors are a major class of membrane receptors that mediate physiological and pathophysiological cellular signaling. Many aspects of receptor activation and signaling can be investigated using genetically encoded luminescent fusion proteins. However, the use of these biosensors in live cell systems requires the exogenous expression of the tagged protein of interest. To maintain the normal cellular context here we use CRISPR/Cas9-mediated homology-directed repair to insert luminescent tags into the endogenous genome. Using NanoLuc and bioluminescence resonance energy transfer we demonstrate fluorescent ligand binding at genome-edited chemokine receptors. We also demonstrate that split-NanoLuc complementation can be used to investigate conformational changes and internalization of CXCR4 and that recruitment of ß-arrestin2 to CXCR4 can be monitored when both proteins are natively expressed. These results show that genetically encoded luminescent biosensors can be used to investigate numerous aspects of receptor function at native expression levels.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Sistemas CRISPR-Cas , Edição de Genes , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células HEK293 , Humanos , Ligantes , Luciferases/análise , Luciferases/genética , Luciferases/metabolismo , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Ligação Proteica , Conformação Proteica , Receptores CXCR/análise , Receptores CXCR/genética , Receptores CXCR4/análise , Receptores CXCR4/genética , beta-Arrestinas/análise , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
13.
Methods Mol Biol ; 2024: 137-152, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31364047

RESUMO

The luciferase immunoprecipitation system (LIPS) assay is a liquid-phase immunoassay that quantitates antigen-specific serum antibodies by measuring luminescence emitted by the reporter enzyme Renilla luciferase (Ruc) fused to an antigen of interest. The LIPS assay can be utilized as a high-throughput and sensitive serological method for profiling serum antibodies recognizing diverse antigens. This chapter provides a detailed protocol for detecting human norovirus-specific serum antibodies with the LIPS assay.


Assuntos
Anticorpos/imunologia , Luciferases/análise , Norovirus/imunologia , Humanos , Imunoensaio , Imunoprecipitação , Luciferases de Renilla/análise
14.
Sci Rep ; 9(1): 8029, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142753

RESUMO

Clinically, both percutaneous and surgical approaches to deliver viral vectors to the heart either have resulted in therapeutically inadequate levels of transgene expression or have raised safety concerns associated with extra-cardiac delivery. Recent developments in the field of normothermic ex vivo cardiac perfusion storage have now created opportunities to overcome these limitations and safety concerns of cardiac gene therapy. This study examined the feasibility of ex vivo perfusion as an approach to deliver a viral vector to a donor heart during storage and the resulting bio distribution and expression levels of the transgene in the recipient post-transplant. The influence of components (proprietary solution, donor blood, and ex vivo circuitry tubing and oxygenators) of the Organ Care System (OC) (TransMedics, Inc., Andover MA) on viral vector transduction was examined using a cell-based luciferase assay. Our ex vivo perfusion strategy, optimized for efficient Adenoviral vector transduction, was utilized to deliver 5 × 1013 total viral particles of an Adenoviral firefly luciferase vector with a cytomegalovirus (CMV) promotor to porcine donor hearts prior to heterotopic implantation. We have evaluated the overall levels of expression, protein activity, as well as the bio distribution of the firefly luciferase protein in a series of three heart transplants at a five-day post-transplant endpoint. The perfusion solution and the ex vivo circuitry did not influence viral vector transduction, but the serum or plasma fractions of the donor blood significantly inhibited viral vector transduction. Thus, subsequent gene delivery experiments to the explanted porcine heart utilized an autologous blood recovery approach to remove undesired plasma or serum components of the donor blood prior to its placement into the circuit. Enzymatic assessment of luciferase activity in tissues (native heart, allograft, liver etc.) obtained post-transplant day five revealed wide-spread and robust luciferase activity in all regions of the allograft (right and left atria, right and left ventricles, coronary arteries) compared to the native recipient heart. Importantly, luciferase activity in recipient heart, liver, lung, spleen, or psoas muscle was within background levels. Similar to luciferase activity, the luciferase protein expression in the allograft appeared uniform and robust across all areas of the myocardium as well as in the coronary arteries. Importantly, despite high copy number of vector genomic DNA in transplanted heart tissue, there was no evidence of vector DNA in either the recipient's native heart or liver. Overall we demonstrate a simple protocol to achieve substantial, global gene delivery and expression isolated to the cardiac allograft. This introduces a novel method of viral vector delivery that opens the opportunity for biological modification of the allograft prior to implantation that may improve post-transplant outcomes.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Insuficiência Cardíaca/terapia , Transplante de Coração/métodos , Perfusão/métodos , Adenoviridae/genética , Aloenxertos/química , Animais , Estudos de Viabilidade , Feminino , Genes Reporter/genética , Vetores Genéticos/genética , Insuficiência Cardíaca/genética , Humanos , Fígado/química , Luciferases/análise , Luciferases/genética , Modelos Animais , Miocárdio/química , Preservação de Órgãos/métodos , Soluções para Preservação de Órgãos/química , Sus scrofa , Transplante Homólogo/métodos
15.
Theranostics ; 9(9): 2646-2661, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31131059

RESUMO

Background: Bioluminescence imaging (BLI) is one of the most widely used optical platforms in molecular imaging, but it suffers from severe tissue attenuation and autoluminescence in vivo. Methods: Here, we developed a novel BLI platform on the basis of bioluminescence resonance energy transfer (BRET) for achieving a ~300 nm blue-to-near infrared shift of the emission (NIR-BRET) by synthesizing an array of 18 novel coelenterazine (CTZ) derivatives, named "Bottle Blue (BBlue)" and a unique iRFP-linked RLuc8.6-535SG fusion protein as a probe. Results: The best NIR-BRET was achieved by tuning the emission peaks of the CTZ derivatives to a Soret band of the iRFP. In mammalian cells, BBlue2.3, one of the CTZ derivatives, emits light that is ~50-fold brighter than DBlueC when combined with RLuc8.6-535SG, which shows stable BL kinetics. When we used a caged version of BBLue2.3, it showed a BL half decay time of over 60 minutes while maintaining the higher signal sensitivity. This NIR BL is sufficiently brighter to be used for imaging live mammalian cells at single cell level, and also for imaging metastases in deep tissues in live mice without generating considerable autoluminescence. A single-chain probe developed based on this BLI platform allowed us to sensitively image ligand antagonist-specific activation of estrogen receptor in the NIR region. Conclusion: This unique optical platform provides the brightest NIR BLI template that can be used for imaging a diverse group of cellular events in living subjects including protein‒protein interactions and cancer metastasis.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Transferência Ressonante de Energia de Fluorescência/métodos , Imidazóis/química , Neoplasias Hepáticas/diagnóstico por imagem , Substâncias Luminescentes/química , Neoplasias Pulmonares/diagnóstico por imagem , Imagem Molecular/métodos , Pirazinas/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Neoplasias da Mama/patologia , Células COS , Chlorocebus aethiops , Feminino , Células HeLa , Xenoenxertos , Humanos , Neoplasias Hepáticas/secundário , Luciferases/análise , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes/métodos , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Célula Única/métodos , Proteína Vermelha Fluorescente
16.
Artigo em Inglês | MEDLINE | ID: mdl-31058097

RESUMO

Transgenic malaria parasites expressing fluorescent and bioluminescent proteins are valuable tools to interrogate malaria-parasite biology and to evaluate drugs and vaccines. Using CRISPR/Cas9 methodology a transgenic Plasmodium falciparum (Pf) NF54 line was generated that expresses a fusion of mCherry and luciferase genes under the control of the Pf etramp10.3 gene promoter (line mCherry-luc@etramp10.3). Pf etramp10.3 is related to rodent Plasmodium uis4 and the uis4 promoter has been used to drive high transgene expression in rodent parasite sporozoites and liver-stages. We examined transgene expression throughout the complete life cycle and compared this expression to transgenic lines expressing mCherry-luciferase and GFP-luciferase under control of the constitutive gapdh and eef1a promoters. The mCherry-luc@etramp10.3 parasites express mCherry in gametocytes, sporozoites, and liver-stages. While no mCherry signal was detected in asexual blood-stage parasites above background levels, luciferase expression was detected in asexual blood-stages, as well as in gametocytes, sporozoites and liver-stages, with the highest levels of reporter expression detected in stage III-V gametocytes and in sporozoites. The expression of mCherry and luciferase in gametocytes and sporozoites makes this transgenic parasite line suitable to use in in vitro assays that examine the effect of transmission blocking inhibitors and to analyse gametocyte and sporozoite biology.


Assuntos
Genes Reporter , Luciferases/análise , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/genética , Proteínas Recombinantes/análise , Coloração e Rotulagem/métodos , Animais , Fusão Gênica Artificial , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Eritrócitos , Edição de Genes , Perfilação da Expressão Gênica , Humanos , Fígado/parasitologia , Luciferases/genética , Camundongos SCID , Proteínas Recombinantes/genética , Esporozoítos/genética , Esporozoítos/crescimento & desenvolvimento
17.
Biotechnol Lett ; 41(6-7): 733-742, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31102075

RESUMO

OBJECTIVE: To monitor the inflammatory storage lesions of end-stage stored whole blood (SWB) using a noninvasive STAT3 signal pathway mouse model. RESULTS: In this study, we present a hydrodynamic transfection-based STAT3-Luc mouse model in which hepatocyte STAT3 signal pathway activation can be monitored by measuring luciferase activity using a noninvasive imaging system. Such a mouse model may reflect systemic IL-6 and inflammation levels by monitoring the activation of STAT3. During end-stage SWB transfusion, in vivo imaging of STAT3-Luc mice showed obvious luciferase activity in the hepatic region, which was consistent with an increase in IL-6 levels in the liver homogenate and circulation. We also confirmed that the mononuclear phagocytic system contributed to the elevation of serum and liver IL-6 after end-stage SWB transfusion. CONCLUSION: The hepatocyte STAT3 signaling pathway, which is activated by end-stage SWB transfusion, is associated with the elevation of systemic IL-6 secreted by macrophages. The STAT3-Luc mouse may serve as a mouse model for monitoring inflammation responses after end-stage SWB transfusion.


Assuntos
Hepatócitos/metabolismo , Interleucina-6/análise , Fígado/patologia , Fator de Transcrição STAT3/análise , Transdução de Sinais , Reação Transfusional/patologia , Imagem Corporal Total/métodos , Animais , Transfusão de Sangue , Genes Reporter , Inflamação/patologia , Luciferases/análise , Camundongos , Coloração e Rotulagem/métodos
18.
Elife ; 82019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30942168

RESUMO

Technologies that convert transient protein-protein interactions (PPIs) into stable expression of a reporter gene are useful for genetic selections, high-throughput screening, and multiplexing with omics technologies. We previously reported SPARK (Kim et al., 2017), a transcription factor that is activated by the coincidence of blue light and a PPI. Here, we report an improved, second-generation SPARK2 that incorporates a luciferase moiety to control the light-sensitive LOV domain. SPARK2 can be temporally gated by either external light or addition of a small-molecule luciferin, which causes luciferase to open LOV via proximity-dependent BRET. Furthermore, the nested 'AND' gate design of SPARK2-in which both protease recruitment to the membrane-anchored transcription factor and LOV domain opening are regulated by the PPI of interest-yields a lower-background system and improved PPI specificity. We apply SPARK2 to high-throughput screening for GPCR agonists and for the detection of trans-cellular contacts, all with versatile transcriptional readout.


Assuntos
Técnicas Citológicas/métodos , Genes Reporter , Luciferases/análise , Biologia Molecular/métodos , Mapeamento de Interação de Proteínas/métodos , Células HEK293 , Humanos , Luz , Luciferases/genética , Sensibilidade e Especificidade
19.
Methods Mol Biol ; 1955: 147-163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30868525

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, the most important parasitic infection in Latin America. Despite a global research effort, there have been no significant treatment advances for at least 40 years. Gaps in our knowledge of T. cruzi biology and pathogenesis have been major factors in limiting progress. In addition, the extremely low parasite burden during chronic infections has complicated the monitoring of both disease progression and drug efficacy, even in predictive animal models. To address these problems, we genetically modified T. cruzi to express a red-shifted luciferase. Mice infected with these highly bioluminescent parasites can be monitored by in vivo imaging, with exquisite sensitivity. However, a major drawback of bioluminescence imaging is that it does not allow visualization of host-parasite interactions at a cellular level. To facilitate this, we generated T. cruzi strains that express a chimeric protein that is both bioluminescent and fluorescent. Bioluminescence allows the tissue location of infection foci to be identified, and fluorescence can then be exploited to detect parasites in histological sections derived from excised tissue. In this article, we describe in detail the in vivo imaging and confocal microscopy protocols that we have developed for visualizing T. cruzi parasites expressing these dual-reporter fusion proteins. The approaches make it feasible to locate individual parasites within chronically infected murine tissues, to assess their replicative status, to resolve the nature of host cells, and to characterize their immunological context.


Assuntos
Doença de Chagas/patologia , Interações Hospedeiro-Parasita , Trypanosoma cruzi/fisiologia , Animais , Doença de Chagas/diagnóstico por imagem , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Fluorescência , Humanos , Luciferases/análise , Luciferases/genética , Substâncias Luminescentes/análise , Substâncias Luminescentes/metabolismo , Medições Luminescentes/métodos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Imagem Óptica/métodos , Trypanosoma cruzi/genética , Trypanosoma cruzi/isolamento & purificação , Imagem Corporal Total/métodos
20.
Methods Mol Biol ; 1955: 179-186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30868527

RESUMO

Chagas disease agent, Trypanosoma cruzi, is capable to persist after prolonged drug treatment using effective drugs. The reason of treatment failure is not known, but recent development of highly sensible bioluminescence imaging coupled to tissue clarification techniques has made possible the detection of individual amastigotes within chronically infected murine tissues and the study of their replicative status. In this chapter, we provide a step-by-step explanation for these protocols that allowed the visualization of nonproliferating amastigotes in tissues of chronically infected mice for the first time.


Assuntos
Doença de Chagas/diagnóstico por imagem , Substâncias Luminescentes/análise , Imagem Óptica/métodos , Trypanosoma cruzi/isolamento & purificação , Animais , Proliferação de Células , Doença de Chagas/patologia , Humanos , Luciferases/análise , Luminescência , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Trypanosoma cruzi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA